Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.12.487988

ABSTRACT

The severity of disease following infection with SARS-CoV-2 is determined by viral replication kinetics and host immunity, with early T cell responses and/or suppression of viraemia driving a favourable outcome. Recent studies have uncovered a role for cholesterol metabolism in the SARS-CoV-2 life cycle and in T cell function. Here we show that blockade of the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) with Avasimibe inhibits SARS-CoV-2 entry and fusion independent of transmembrane protease serine 2 expression in multiple cell types. We also demonstrate a role for ACAT in regulating SARS-CoV-2 RNA replication in primary bronchial epithelial cells. Furthermore, Avasimibe boosts the expansion of functional SARS-CoV-2-specific T cells from the blood of patients sampled in the acute phase of infection. Thus, re-purposing of available ACAT inhibitors provides a compelling therapeutic strategy for the treatment of COVID-19 to achieve both antiviral and immunomodulatory effects.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1542972.v1

ABSTRACT

T cells can contribute to clearance of respiratory viruses that cause acute-resolving infections like SARS-CoV-2, helping to provide long-lived protection against disease following infection. Recent studies suggested an additional role for T cells in resisting overt infection; pre-existing cross-reactive responses to the highly conserved SARS-CoV-2 replication transcription complex (RTC) were preferentially enriched in healthcare workers who had abortive infections (1) and non-spike cross-reactive T cells were associated with protection against infection in household contacts (2). We hypothesise that such early viral control would require pre-existing cross-reactive memory T cells already resident at the site of infection. Airway-resident CD4+T cells have been shown to be critical for mediating protection following intra-nasal vaccination in a murine model of SARS-CoV3, but have not been reported in the context of human SARS-CoV-2. We used bronchoalveolar lavage samples from the lower respiratory tract of healthy donors obtained prior to the COVID-19 pandemic to probe for T cell specificities previously found to be preferentially enriched in the blood of donors with abortive infection(1). Our data reveal the potential to harness functional airway-resident SARS-CoV-2-reactive T cells in next-generation mucosal vaccines.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.26.21259239

ABSTRACT

Individuals with likely exposure to the highly infectious SARS-CoV-2 do not necessarily develop PCR or antibody positivity, suggesting some may clear sub-clinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-5. We hypothesised that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-26-12, would expand in vivo to mediate rapid viral control, potentially aborting infection. We studied T cells against the replication transcription complex (RTC) of SARS-CoV-2 since this is transcribed first in the viral life cycle13-15 and should be highly conserved. We measured SARS-CoV-2-reactive T cells in a cohort of intensively monitored healthcare workers (HCW) who remained repeatedly negative by PCR, antibody binding, and neutralisation for SARS-CoV-2 (exposed seronegative, ES). 16-weeks post-recruitment, ES had memory T cells that were stronger and more multispecific than an unexposed pre-pandemic cohort, and more frequently directed against the RTC than the structural protein-dominated responses seen post-detectable infection (matched concurrent cohort). The postulate that HCW with the strongest RTC-specific T cells had an abortive infection was supported by a low-level increase in IFI27 transcript, a robust early innate signature of SARS-CoV-2 infection16. We showed that the RNA-polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and was preferentially targeted by T cells from UK and Singapore pre-pandemic cohorts and from ES. RTC epitope-specific T cells capable of cross-recognising HCoV variants were identified in ES. Longitudinal samples from ES and an additional validation cohort, showed pre-existing RNA-polymerase-specific T cells expanded in vivo following SARS-CoV-2 exposure, becoming enriched in the memory response of those with abortive compared to overt infection. In summary, we provide evidence of abortive seronegative SARS-CoV-2 infection with expansion of cross-reactive RTC-specific T cells, highlighting these highly conserved proteins as targets for future vaccines against endemic and emerging Coronaviridae.


Subject(s)
COVID-19 , Abortion, Septic
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.13.20211763

ABSTRACT

Studies of adaptive immunity to SARS-CoV-2 include characterisation of lethal, severe and mild cases. Understanding how long immunity lasts in people who have had mild or asymptomatic infection is crucial. Healthcare worker (HCW) cohorts exposed to and infected by SARS-CoV-2 during the early stages of the pandemic are an invaluable resource to study this question. The UK COVIDsortium is a longitudinal, London hospital HCW cohort, followed from the time of UK lockdown; weekly PCR, serology and symptom diaries allowed capture of asymptomatic infection around the time of onset, so duration of immunity could be tracked. Here, we conduct a cross-sectional, case-control, sub-study of 136 HCW at 16-18 weeks after UK lockdown, with 76 having had laboratory-confirmed SARS-CoV-2 mild or asymptomatic infection. Neutralising antibodies (nAb) were present in 90% of infected HCW sampled after the first wave; titres, likely to correlate with functional protection, were present in 66% at 16-18 weeks. T cell responses tended to be lower in asymptomatic infected HCW than those reporting case-definition symptoms of COVID-19, while nAb titres were maintained irrespective of symptoms. T cell and antibody responses were discordant. HCW lacking nAb also showed undetectable T cells to Spike protein but had T cells of other specificities. Our findings suggest that the majority of HCW with mild or asymptomatic SARS-CoV-2 infection carry nAb complemented by multi-specific T cell responses for at least 4 months after mild or asymptomatic SARS-CoV-2 infection.


Subject(s)
COVID-19 , Agricultural Workers' Diseases
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.01.127514

ABSTRACT

Older adults are at high risk for infectious diseases such as the recent COVID-19 and vaccination seems to be the only long-term solution to the pandemic. While most vaccines are less efficacious in older adults, little is known about the molecular mechanisms that underpin this. Autophagy, a major degradation pathway and one of the few processes known to prevent aging, is critical for the maintenance of immune memory in mice. Here, we show induction of autophagy is specifically induced in human vaccine-induced antigen-specific T cells in vivo . Reduced IFNγ secretion by vaccine-induced T cells in older vaccinees correlates with low autophagy. We demonstrate in human cohorts that levels of the endogenous autophagy-inducing metabolite spermidine, fall with age and supplementing it in vitro recovers autophagy and T cell function. Finally, our data show that endogenous spermidine maintains autophagy via the translation factor eIF5A and transcription factor TFEB. With these findings we have uncovered novel targets and biomarkers for the development of anti-aging drugs for human T cells, providing evidence for the use of spermidine in improving vaccine immunogenicity in the aged human population.


Subject(s)
Communicable Diseases , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL